Fabrication of Positively Charged Fluorescent Polymer Nanoparticles for Cell Imaging and Gene Delivery
نویسندگان
چکیده
Development of efficient non-viral gene delivery vector has aroused great attention in the past few decades. In this study, we reported a new gene delivery vector, positively charged fluorescent conjugated polymer nanoparticles (CPNPs), for efficient gene transfection and in-situ intracellular fluorescence imaging. The microscopic and spectroscopic characterizations demonstrated that these CPNPs possess decent fluorescence performance (e.g. with fluorescence quantum yield of 70.7±0.3%) and small size dimension of ~3.6±0.3 nm (DLS result). Fast and efficient cellular translocation capability was observed according to the time-dependent living cell imaging experiments. Nearly all of the cells were loaded with CPNPs after co-incubation for 2 h regardless of the cell type. In comparison with the commonly used gene delivery vector, lipofectamine 2000 (with gene transfection efficiency of 55±5% for pEGFP), the gene expression efficiency with the positively charged CPNPs (70±3% for pEGFP) was improved significantly. Intracellular fluorescence imaging results demonstrated that the CPNPs could actively assemble close to the periphery of nuclei. Disassembly was not observed even 36 h later, which greatly facilitates releasing of pDNA close to the periphery of nuclei and thus promotes the gene transfection efficiency.
منابع مشابه
In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection
Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملUltrasound-Mediated Surface Engineering of Theranostic Magnetic Nanoparticles: An Effective One-Pot Functionalization Process Using Mixed Polymers for siRNA Delivery
Nano-sized materials have been studied for diverse clinical applications, partly because their size-dependent physical properties and nanometer-scale dimensions have important roles in biological systems. Synergistic combinations of differently nanostructured materials, such as polymer-coated magnetic nanoparticles (NPs), strongly promoted various multifunctional nano-medical platforms for simu...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملOriginal Research Nano-adjuvanted polio vaccine: Preparation and characterization of chitosan and trimethylchitosan (TMC) nanoparticles loaded with inactivated polio virus and coated with sodium alginate
Objective(s): It is proposed that particulate antigens could better interact with the antigen presenting cells (APCs). A fast, simple and scalable process for preparation of polymeric nanoparticles (NPs) is coating of charged antigenic particles, like viruses, with oppositely charged polymers. A second coating with a charged polymer could increase the stability and modify the immunomodulatory ...
متن کامل